如图,p是双曲线上一点,直线PQ交x轴于Q点,PM∥x轴交y轴于M,△OPM的面积为1.(1)求双曲线的解析式;(2)若△OPQ是等腰直角三角形,求Q点的坐标.-数学

题文

如图,p是双曲线上一点,直线PQ交x轴于Q点,PM∥x轴交y轴于M,△OPM的面积为1.
(1)求双曲线的解析式;
(2)若△OPQ是等腰直角三角形,求Q点的坐标.

题型:解答题  难度:中档

答案

(1)设p(m,n),双曲线的解析式为y=
k
x
(k>0);
1
2
mn=1,即mn=2;
又∵n=
k
m
,即k=mn=2,∴y=
2
x


(2)由△OPQ是等腰直角三角形,则OP是∠xoy的平分线,
∴m=n;
又mn=2,则m=n=

2

∴OP=2,则OQ=2

2

即Q(2

2
,0).

据专家权威分析,试题“如图,p是双曲线上一点,直线PQ交x轴于Q点,PM∥x轴交y轴于M,△OP..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐