如图,矩形ABCD中,AB=5,AD=3,E是CD上一点(不与C,D重合),连接AE,过点B作BF⊥AE,垂足为F.(1)若DE=2,求BFAB的值;(2)设AE=x,BF=y.①求y关于x的函数解析式,写出自变量x的-数学

题文

如图,矩形ABCD中,AB=5,AD=3,E是CD上一点(不与C,D重合),连接AE,过点B作BF⊥AE,

垂足为F.
(1)若DE=2,求
BF
AB
的值;
(2)设AE=x,BF=y.
①求y关于x的函数解析式,写出自变量x的取值范围;
②问当点E从D运动到C,BF的值是增大还是减小?说明理由.
③当△AEB为等腰三角形时,求BF的长.
题型:解答题  难度:中档

答案

(1)∵DE=2,AD=3,
∴AE=

13

∵△ABF∽△EDA
BF
AB
=
AD
AE
=
3

13
13


(2)根据(1)可知:
5
x
=
y
3
即y=
15
x
,3<x<

34

②减小,因为y=
15
x
中,y随x的增大而减小;
③当△AEB为等腰三角形时,有3种情况:
a、当AB=BE时,则BE=5,则CE=4,DE=1,AE=

10
,AF=

10
2
,∴BF=
3

10
2

b、当AE=BE时,E为CD中点,则DE=2.5,AE=

61
2
,所以BF=
30

61
61

c、当AB=AE=5时,△ABF≌△AED,则BF=AD=3.
所以BF的值为:
3

10
2
30

61
61
或3.

据专家权威分析,试题“如图,矩形ABCD中,AB=5,AD=3,E是CD上一点(不与C,D重合),连接..”主要考查你对  求反比例函数的解析式及反比例函数的应用,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用矩形,矩形的性质,矩形的判定

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐