设(a,b)是一次函数y=(k-2)x+m与反比例函数y=nx的图象的交点,且a、b是关于x的一元二次方程kx2+2(k-3)x+(k-3)=0的两个不相等的实数根,其中k为非负整数,m、n为常数.(1)求k的-数学

题文

设(a,b)是一次函数y=(k-2)x+m与反比例函数y=
n
x
的图象的交点,且a、b是关于x的一元二次方程kx2+2(k-3)x+(k-3)=0的两个不相等的实数根,其中k为非负整数,m、n为常数.
(1)求k的值;
(2)求这个一次函数与反比例函数的解析式.
题型:解答题  难度:中档

答案

(1)根据a、b是关于x的一元二次方程kx2+2(k-3)x+(k-3)=0的两个不相等的实数根,得:

4(k-3)2-4k(k-3)>0
k≠0
,解得k<3且k≠0,又k是非负整数,且一次函数中的k-2≠0,所以k=1;

(2)当k=1时,有x2-4x-2=0,则a+b=4,ab=-2,把k=1,(a,b)代入一次函数y=(k-2)x+m,得b=-a+m,则m=a+b=4,
所以一次函数的解析式是y=-x+4.反比例函数解析式为y=-
2
x

据专家权威分析,试题“设(a,b)是一次函数y=(k-2)x+m与反比例函数y=nx的图象的交点,且..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐