已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在-数学

题文

已知某种水果的批发单价与批发量的函数关系如图(1)所示.
(1)请说明图(1)中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图(2)中的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量y(kg)与零售价x(元)之间的函数关系为反比列函数关系,如图(3)所示,该经销商拟每日售出不低于64kg该种水果,且当日零售价不变,请你帮助该经销商设计每日进货和销售的方案,使得日获得的利润z(元)最大.
题型:解答题  难度:中档

答案

(1)当批发量在20kg到60kg时,单价为5元/kg
当批发量大于60kg时,单价为4元/kg…(2分)

(2)当20≤m≤60时,w=5m
当m>60时,w=4m…(4分)
…(6分)
当240<w≤300时,同样的资金可以批发到更多的水果.…(7分)

(3)设反比例函数为y=
k
x

则80=
k
6
,k=480,即反比列函数为y=
480
x

∵y≥64,
∴x≤7.5,
∴z=(x-4)
480
x
=480-
1920
x

∴当x=7.5时,利润z最大为224元.

据专家权威分析,试题“已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。