我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转-数学

题文

我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数y=

3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.
题型:解答题  难度:中档

答案

(1)平行四边形(3分)

(2)①∵点B(p,1)在y=

3
x
的图象上,
∴1=

3
p

∴p=

3
.(4分)
过B作BE⊥x轴于E,则OE=

3
,BE=1
在Rt△BOE中,tanα=
BE
OE
=
1

3
=

3
3

α=30°,(5分)
∴OB=2.
又∵点B、D是正比例函数与反比例函数图象的交点,
∴点B、D关于原点O成中心对称,(6分)
∴OB=OD=2.
∵四边形ABCD为矩形,且A(-m,0),C(m,0)
∴OA=OB=OC=OD=2(7分)
∴m=2;(8分)
②能使四边形ABCD为矩形的点B共有2个;(9分)

(3)四边形ABCD不能是菱形.理由如下:(10分)
若四边形ABCD为菱形,则对角线AC⊥BD,且AC与BD互相平分,
因为点A、C的坐标分别为(-m,0)、(m,0),
所以点A、C关于原点O对称,且AC在x轴上,(11分)
所以BD应在y轴上,
这与“点B、D分别在第一、三象限”矛盾,
所以四边形ABCD不可能为菱形.(12分)

据专家权威分析,试题“我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐