反比例函数y=mx(m>0)第一象限内的图象如图所示,△OP1B1,△B1P2B2均为等腰三角形,且OP1∥B1P2,其中点P1,P2在反比例函数y=mx(m>0)的图象上,点B1,B2在x轴上,则B1B2OB1的值-数学
题文
反比例函数y=
|
答案
作P1A⊥x轴于A,P2C⊥x轴于C,如图, 设P1点的坐标为(a,
∵△OP1B1,△B1P2B2均为等腰三角形, ∴OA=B1A,B1C=CB2, ∴OA=a,OB1=2a,B1C=b-2a,B1B2=2(b-2a), ∵OP1∥B1P2, ∴∠P1OA=∠CB1P2, ∴Rt△P1OA∽Rt△P2B1C, ∴OA:B1C=P1A:P2C,即a:(b-2a)=
整理得a2+2ab-b2=0,解得a=(
∴B1B2=2(b-2a)=(6-4
∴
故答案为
|
据专家权威分析,试题“反比例函数y=mx(m>0)第一象限内的图象如图所示,△OP1B1,△B1P2B2..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数y=kx(x>0)的图象经过点A,则k的值为()A.-6B.-3C.3D.6-数学
下一篇:如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一限内的一个分支,点P是这条曲线的任意一点-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |