如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,过A1、A3、A5…A2n-1分别作x轴的垂线与反比例函数y=2x的图象交于点B1、B3、B5…B2n-1,与反比例函数y=4x的-数学

题文

如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,过A1、A3、A5…A2n-1分别作x轴的垂线与反比例函数y=
2
x
的图象交于点B1、B3、B5…B2n-1,与反比例函数y=
4
x
的图象交于点C1、C3、C5、…C2n-1,并设△OB1C1与△B1C1A2合并成的四边形的面积为S1,△A2B2C3与△B2C3A4合并成的四边形的面积为S2…,以此类推,△A2n-2BnCn与△BnCnA2n合并成的四边形的面积为Sn,则S1=______;
1
s1
+
1
s2
+
1
s3
+…+
1
sn
=______.(n为正整数).
题型:填空题  难度:中档

答案

∵在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2n=1,过A1、A3、A5…A2n-1分别作x轴的垂线与反比例函数y=
2
x
的图象交于点B1、B3、B5…B2n-1,与反比例函数y=
4
x
的图象交于点C1、C3、C5、…C2n-1
∴OA1?B1A1=2,OA1?C1A1=4,
∴△OB1C1与△B1C1A2合并成的四边形的面积为S1=
1
2
×2OA1?C1A1-
1
2
×2OA1?B1A1=2,
同理可得出:OA3?C3A3=4,OA3?B3A3=2,
∴C3A3=
4
3
,B3A3=
2
3

∴△A2B2C3与△B2C3A4合并成的四边形的面积为S2=
1
2
×2A2A3?C3A3-
1
2
×2A2A3?B3A3=
2
3

可得出:S3=
2
5

∴Sn=
2
2n-1

1
s1
+
1
s2
+
1
s3
+…+
1
sn
=
1
2
+
3
2
+
5
2
+…+
2n-1
2
=
1+3+5+…+(2n-1)
2
=
n2
2
(n为正整数).
故答案为:2,
n2
2

据专家权威分析,试题“如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4…=A2n-1A2..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐