教育如何玩转大数据

首页 > 教育新闻 > 教育杂谈/2014-03-24 / 加入收藏 / 阅读 [打印]

    ■以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考量,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策,这才能被称为大数据。

    ■随着技术的发展,大数据在教育领域有了越来越广泛的应用,学校拥有可用的、高质量的海量数据逐渐成为现实,但如何进行信息挖掘,给未来教育带来更大的可能,则对教育研究者的想象力提出了挑战。

    ■大数据需要每个人做基础工作,给未来留下数据,就是每个人对大数据最好的贡献。

    ■本报记者 易鑫

    “发现你上个月餐饮消费较少,不知是否有经济困难?”不久前,华东师范大学某女生收到了学校勤助中心发来的这样一条短信。而实际上,该女生不过是因为减肥而减少了食堂就餐的开销。

    此事让人们惊呼学校“有爱”的同时,更让大家关注的,是学校实现“有爱”的方式,即华东师大利用预警系统跟踪学生的餐饮消费数据,发现低于警戒值就发出短信慰问,以确定学生是否有经济困难、是否需要帮助。

    有人将此称作大数据,即通过分析行为数据,让对象选择更具有精准性。但更多的专家认为,这不过是大数据的起步阶段,是一种简单的数据挖掘,真正的大数据,将给教育带来翻天覆地的变化,甚至带来一场新的革命。

    那么,究竟什么是真正的大数据?大数据是否已经悄悄进入教育领域?大数据将会给教育带来哪些不可思议的可能?拥抱大数据,我们又会面临哪些困境和挑战?

    不要总喊“狼来了”,“狼”已经来了

    一直以来,人们普遍认为,只有在物理学、化学、生物学、天文学等自然科学领域,观测、记录、挖掘海量数据才是有价值的,而在教育学、社会学、心理学、管理学等社会科学领域,通过设计实验及“正义的程序”调查出来的结果,常常难以得到普遍承认。

    直到2012年,发生了一件重要的事情。

    奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。

    “奥巴马的例子告诉我们,只要数据量够大,够及时,挖掘够深刻,我们完全可以洞悉每个选民的投票几率。”上海思来氏信息咨询有限公司教育测评中心首席研究员张韫说,“迅速普及的互联网与移动互联网,悄然为记录人的行为数据提供了最为便利、持久的载体。最重要的是,在这些强大的数据收集终端面前,人们没有掩饰的意图,从而创造着过去无法收集与分析的海量数据,这让所有社会科学领域能够从宏观群体走向微观个体,让跟踪每一个人的数据成为了可能,从而让研究人性成为了可能。”

    而在教育领域,海量数据早在技术变革的浪潮中席卷而来。

    2009年,孟加拉裔美国人萨尔曼·可汗创立了一家非营利教育组织——可汗学院,利用网络视频进行免费授课,涵盖数学、历史、金融、物理、化学、生物、天文学等科目的内容,他的教学视频像病毒一样广为传播,如今全球已有成千上万的学生通过互联网学习其视频课程。

    随后,类似的课程如雨后春笋般冒出,普林斯顿、伯克利、宾夕法尼亚大学等知名学府都宣布加盟在线教育,逐步向全世界开放自己的课程。

    在宾夕法尼亚州,从小学到高中都建立了在线学校,有的地方免费为选择参加在线学习的学生配发笔记本电脑、打印机和扫描仪,作为学习的工具。

    ……

    “以在线教育为代表的各种综合技术的集合,让学生关于学习行为的各种数据被自动留存,例如做一道题花多长时间,是否经过修改,做题的顺序是否有跳跃,是否会回头重新检查……但要明确的是,仅仅是远程教育和在线课程,不过是数字而已,并不能称之为数据。”上海海事大学经济管理学院管理科学系副教授魏忠说,“以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策,这才能被称为大数据。”

    “举个简单的例子,一个学生考试得了78分,这只是一个数字,如果把这78分背后的因素考虑进去,例如学生的家庭背景、努力程度、学习态度、智力水平等,把它们和78分联系在一起,这就成了数据。”魏忠说。

    在研究者们看来,大数据有着明显的特征。

    “一般来说有四点。第一,数据体量巨大。从数量单位的TB(太)级别,跃升到PB(帕)级别,也就是大了至少100倍。第二,数据类型繁多。包括所有的结构化、半结构化和非结构化(如图片、视频等)数据。第三,价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅有一两秒。第四,处理速度快。”魏忠说。

    显而易见,考试、课堂、师生互动、校园设备使用、家校关系……只要技术达到的地方,各个环节都将渗透大数据。

    “无论是教育管理部门,还是校长、教师,以及学生和家长,都可以提供针对不同应用的个性化分析报告。通过大数据的分析来优化教育机制,做出更科学的决策,这将带来潜在的教育革命。”首都师范大学远程教育所所长方海光说,“谁能在其中把握好大数据,谁就能在将来的竞争中赢得主动权。”

    于教育领域而言,大数据时代的到来,正如魏忠所说,不要总喊“狼来了”,“狼”真的已经来了。

    学校在玩大数据

    近年来,我国已有不少学校开始了数据挖掘的探索,但真正被业内人士承认的教育领域的大数据应用却为数不多,其中被公认的当数东华大学的智能实验室项目。

    几年前,东华大学的实验室极为分散,十几个学院,每个学院都有三四个实验室,有的实验室甚至还在系里,教学评估要通过表格填报的方式来解决,数据的科学性和真实性都得不到保障,东华大学教务处处长吴良深感人工管理太吃力、效率也太低。

    “2009年,我们提出智能管理的思路,即用物联网的方式把实验室里所有的仪器设备都管理起来。我们和专门研究数据挖掘的公司合作,在材料学院做了试点。”吴良说,“只要学生进入实验室,哪个学生使用了哪台仪器设备,使用了多长时间,基本所有的使用情况都能记录下来,所有仪器的电流、电压都可以监控。之后想要的数据由电信号直接产生,自动计算出来自动生成表格,实验室利用率等情况在表格上一目了然。”

    如今,东华大学所有学院的实验室都纳入了智能实验室的管理。“从表格就可以看出,哪些实验室申请的设备根本不必购买,哪些实验室不再需要拨钱。实验室的使用率和第二年的经费完全挂钩,最后实现教育经费使用的集约高效。”吴良说。

    另外,东华大学智能实验室还实现了24小时开放无人管理、跨学院使用等人工无法实现的管理,数据显示,智能实验室的管理对学生学习自主性的提高有显著影响,学生在实验室的时间甚至超过了在教室的时间。

    “总体来看,目前开始进行数据挖掘的高校基本都是信息化做得较好、规模较大的学校,其主要原因是他们有充足的数据量。”魏忠说。

    据了解,浙江大学通过对资产的归纳、整理,最终形成权威、全面的资产数据,并提供数据查询和分析服务。这些数据分析的成果已经被真正地应用起来,能够帮助教务处更好地利用教室、实验室等资源。

    复旦大学则对特定的学生进行数据分析,并且得到一些非常有价值的数据。比如,从平均绩点看,来自东部地区、中部地区、西部地区学生的成绩呈递减趋势。在中部和西部地区,城镇学生成绩优于农村学生,东部地区则相反。分析认为,出现这种情况或与学生所受基础教育相关:在中、西部地区,城镇的基础教育资源和水平明显高于农村;而在东部地区,不少农村学生在基础教育阶段反而可能学得更深。

    清华大学正在做一些学生成长类的数据分析。比如,针对进校时成绩很优秀的一批学生,追踪其在大学四年的各种数据,观察其成长路径,或者对毕业时表现很优秀的学生进行追溯。

    “可以看出,目前高校对信息数据的挖掘主要集中在针对网络系统运行所做的数据分析、针对教学教务管理所做的支持、针对特定学生的分析、针对科研所做的数据分析支持等方面。”魏忠说。

    而在中小学,一些数据挖掘的项目也在起步。

    “在基于电子书包的一对一课堂数字化课堂教学中,国内也积累了大量大数据分析决策的典型案例。”方海光说,比如首都师范大学数字化学习实验室开发的数字化课堂的大数据分析应用,已经在扬州、常州等地中小学的200多个班级进行了多个学期的系统性试点应用,带来了教育效果的明显改变。

    “在数字化课堂教学过程中,可以对学习过程进行数据形式化采集和描述,并基于课堂单元和学期单元进行学习过程的大数据挖掘和分析。教师通过这些数据和分析结果,可以即时进行教学控制和教学反思,从而提高课堂教学水平。学生和家长通过这些数据和分析结果,也可以尽快发现自己学习中的不足,进而也可以提高自己的学习水平。”方海光说。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐