教育如何玩转大数据

首页 > 教育新闻 > 教育杂谈/2014-03-24 / 加入收藏 / 阅读 [打印]

    “在国内尤其是北京、上海、广东等城市,大数据在教育领域有了越来越多的应用,像慕课、在线课程、翻转课堂等,已经有越来越多的学生加入到网上学习的行列中来。”北京师范大学教育技术学院教授、现代教育技术研究所所长何克抗说。

    随着技术的发展,大数据在教育领域有了越来越广泛的应用,学校拥有可用的、高质量的海量数据逐渐成为现实,但如何进行信息挖掘,给未来教育带来更大的可能,则对教育研究者的想象力提出了挑战。

    大数据时代,教育有哪些可能

    “你现在上网的时候,有没有发现,这些网站正在变得越来越了解你?”张韫说,“比如淘宝网会根据你买过什么、浏览过什么,来判断你还有可能购买什么,而新浪微博会根据你关注了谁来判断你还可能对哪些人感兴趣。”

    那么,如果技术能够帮助我们了解每一个学生的需求,绵延了2000多年的“因材施教”的理想,是否离我们更近了呢?

    在张韫看来,这完全可能。“比如A同学做对了第4题,系统马上可以告诉他,他可以跳过第7题,因为做对第4题的同学几乎不可能做错第7题。如果B同学做错了第5题,那么系统会提示他继续练习第6题,因为这个知识点可能是该学生需要反复进行操练与巩固的。”张韫说,“学习分析系统让学生接受个性化的教育具有了可能。”

    “基于在线学习和学习分析技术,大数据在老师的教学与学生的自主学习中,将会有更多应用和更重要的意义。”何克抗说,“在自主学习方面,网络将跟踪学生的整个学习过程,从中了解学生的学习方法和学习习惯,了解学生的个性、兴趣、爱好,从而获取相关数据,帮助学生了解自己的学习成果,更好地进行自主学习。而在教学方面,相关数据将便于老师了解学生的学习能力、认知能力,及时改进教学方法,使教学更加有针对性。另外,将来老师的在线课堂可能会拥有好几万学生,众多学生的思想交流所碰撞出的思想火花,将远远超过只有几十个人的传统课堂,教学效果可能比传统课堂更加明显。”

    魏忠认为,大数据将会给更多的教育行为、教育活动带来新的可能。

    “今后,高校的录取方式、用人单位的招聘方式,都可能发生极大的变化。”魏忠说,“在学生的学习成长过程中,将会积累大量的结构性、非结构性数据,例如每一次考试的成绩、学习的速度、在哪方面有特长、曾经获得过哪些奖励、参加过哪些社会活动等,在电子档案中将一目了然,包括学生的微博、社交活动中也会留下大量的信息,成长轨迹非常清晰,整个过程如果想要造假,成本会相当高。高校招人只需要看这些过程化的数据,选择适合自己学校的学生,整个高考录取行为可能变成持续不断的录取方式。学生的过程数据还可以显示,这个学生是更适合做医生还是工程师,更应该从哪个方向努力、从事什么工作,这对学生更为重要。”

    同样,高校及用人单位的真实情况也将被数据记录下来。“我们都说清华大学好,但它好在哪里?哪些学科排名多少?有哪些名师?特色在哪里?大数据将为学生提供精确的信息,结果是,不再有那么多学生追求名校,而是会选择适合自己的学校和学科。”魏忠说。

    “未来,当数据量积累到了一定的程度,教育将从社会科学变成实证学科,大数据将成为研究人类教育行为的基石。”魏忠说。

    方海光认为,对于不同层面的决策者,大数据都会带来不同的惊喜。对于教育行政部门、学校而言,大数据将帮助他们在管理行为上做出更加科学而非经验判断式的决策;对于教育研究者来说,他们能够重新审视学生的需求,通过高新的技术以及细致的分析,找到怎样的课程、课堂、教师能够更加吸引学生;对于学生而言,新技术能够解放他们本来就有的学习能力和天分,人力资本将成倍地增长。

    “总之,大数据将让学习变成一种服务。”方海光说。

    什么在阻挡大数据的来袭

    大数据在教育领域应用的前景很光明,但在专家们看来,道路却十分曲折。

    “好的内容比平台重要。”张韫说。在他看来,国内教育领域最大的问题在于没有留存数据、收集数据的意识。

    对此,魏忠深有同感。“照理说,我国教育领域的数据资源是非常丰富的,但是我们却面临着数据的严重匮乏。比如教计算机的老师,如果不愿意进实验室,那么数据从何而来?如果老师有心把作业变成资源放在网络上,把知识变成题库实施任务教学,那将会给未来的教学带来成千倍的回馈。”

    采集工具的研发也是大数据发展的绊脚石之一。“这需要开放市场,鼓励和发展一些中小企业、私营企业来开发平台和系统,技术的研发才会生长出活力,否则,研发的速度太慢。”魏忠说。

    有了数据、有了研发工具,大数据的应用仍面临诸多难题。

    在不久前中国高等教育学会信息化分会青委会举行的一次技术论坛上,多个高校的相关研究人员提出了自己的困惑。

    清华大学信息化技术中心袁芳认为,业务需求是所有数据分析的目的,拥有了需求,高校才能有针对性地对数据进行分析,但最让她困惑的,是不知道数据挖掘有哪些“需求”。她认为,这对于高校研究人员而言,是一种很被动的情形。“我们只好先假设一些目标,做一些我们认为有意义的分析,然后把结果给业务部门看,期待着他们会发现,原来数据挖掘可以帮助他们实现这样的功能。那么,也许可以启发出他有别的需求。反正就是尽自己可能变被动为主动。”袁芳说。

    当有了数据挖掘的需求,技术人才的缺乏又将成为挑战。“数据分析对于技术人员的要求很高,要求他们不仅精通技术,也要熟悉校园网业务,而这样的人才目前很缺乏。”张韫说。

    此外,数据挖掘机制方面,学校也急需理顺。华东师范大学信息化办公室主任沈富可在论坛上提出,关于数据挖掘,国内的院校研究也已起步,但尚停留在学术研究层面,高校内鲜有带有行政管理职能的院校研究机构成立,其功能定位、研究范畴和研究方法与国外院校研究相比,尚有较大差距。其研究人员多是高等教育学专业背景的人员,虽从美国引进、传播了院校研究的概念,并尝试推动了院校研究的实践,但数据分析作为现代院校研究的基础和重要内容,尚未引起我国大多数致力于院校研究的学者的重视。

    沈富可认为,数据分析作为推动高校未来发展的一项很有战略眼光的事业,应当从整个管理体制中完善。以美国纽约大学为例,其数据管理体制中有两个重要角色,即数据管理员和院校研究办公室。他们的数据分析是由院校研究办公室自上而下地开展工作,院校研究办公室直接从学校数据仓库获取数据,信息化部门密切与之配合,双方协同确保学校数据的准确性和完整性,我国高校在数据挖掘方面也可以参考这一机制。

    在方海光看来,教育行政部门、学校等教育组织的决策者还将面临打破常规、加大创新力度、增加主动性等方面的挑战,而这,往往是最艰难的一步。

    可以想见,走向大数据时代,教育领域还有重重困难需要跨越。

    “但是,不管怎样,我们至少需要跨出第一步。”魏忠说,“大数据需要每个人做基础工作,给未来留下数据,就是每个人对大数据最好的贡献。”

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐