有一列数1,1,2,3,5,8,13,21,34,55,…从第三个数开始,每个数都是它前两个数之和.那么在前1000个数中,有______个奇数.-数学

首页 > 考试 > 数学 > 小学数学 > 找规律/2019-02-09 / 加入收藏 / 阅读 [打印]

题文

有一列数1,1,2,3,5,8,13,21,34,55,…从第三个数开始,每个数都是它前两个数之和.那么在前1000个数中,有______个奇数.
题型:填空题  难度:中档

答案

这个数列是按照“奇数、奇数、偶数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;
1000÷3=333…1,余数是1,余下的这个数是奇数;
所以奇数有:
333×2+1=667(个).
答:共有667个奇数.
故答案为:667.

据专家权威分析,试题“有一列数1,1,2,3,5,8,13,21,34,55,…从第三个数开始,每..”主要考查你对  找规律  等考点的理解。关于这些考点的“档案”如下:

找规律

考点名称:找规律

  • 学习目标:
    1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
    2、培养初步的观察、推理能力。

  • 知识点拨:
    在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
    找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
    寻找数列的规律,通常从两个方面来考虑:
    (1)寻找各项与项数间的关系;
    (2)考虑相邻项之间的关系,然后,再总结出一般的规律。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐