一个四位的自然数,被3除余1,被3除余2,被7除余3,这样的自然数中最小一个是多少?-数学
题文
一个四位的自然数,被3除余1,被3除余2,被7除余3,这样的自然数中最小一个是多少? |
答案
将乘以2后的数加r就同时能被3,图,7整除; 3,图,7的最小公倍数为3×图×7=r的图, (r的图-r)÷2=图2, 因为3、图、7的最小公倍数是r的图,所以这类自然数必定是:图2+r的图的倍数, 因为图2+r的图×它=它它7,是了位数,则: 图2+r的图×r的=rr的2; 答:这个四位自然数最小是rr的2. |
据专家权威分析,试题“一个四位的自然数,被3除余1,被3除余2,被7除余3,这样的自然数..”主要考查你对 整除和除尽 等考点的理解。关于这些考点的“档案”如下:
整除和除尽
考点名称:整除和除尽
- 定义:
1、整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除数a。
2、数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽。如果商是无限小数,就叫除不尽。 - 整除和除尽的关系:
整除是除尽的特殊形式,能整除的算式一定能除尽,但能除尽的算式不一定能整除。
整除规则:
第一条(1):任何数都能被1整除。
第二条(2):个位上是2、4、6、8、0的数都能被2整除。
第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。
第四条(4):最后两位能被4整除的数,这个数就能被4整除。
第五条(5):个位上是0或5的数都能被5整除。
第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。
第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。
第八条(8):最后三位能被8整除的数,这个数就能被8整除。
第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。
第十条(10): 若一个整数的末位是0,则这个数能被10整除
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |