如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两。(1)当点A的坐标为-九年级数学
题文
如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两。 (1)当点A的坐标为(,p)时,①填空:p=_____,m=______,∠AOE=_______; ②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形; (2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化,请说明理由。 |
|
答案
解:(1)①P=1,m=,∠AOE=60°; ②连结TM、ME、EN,NQ、MQ(如图1) ∵OE切于点E,l∥x轴 ∴∠OEQ=∠QFM=90°,且NF=MF 又∵QF=2-1=1=EF, ∴四边形MENQ是平行四边形, ∴QN∥ME 在Rt△QFN中,QF=1,QN=2, ∴∠FQN=60° 依题意,在四边形OEQT中,∠TOE=60°,∠OTQ=∠OEQ=90°, ∴∠TQE=120° ∴∠TQE+∠NQE =180°, ∴T、Q、N在同一直线上 ∴ME∥TN,ME≠TN,且∠TMN=90°, 又∠TNM=30°, ∴MT=2, 又QE=QN=2, ∴△EQN为等边三角形, ∴EN=2, ∴EN=MT, ∴四边形MENT是等腰梯形; 注:也可证明∠MTN=∠ENT=60° |
|
(2)a的值不变,理由如下: 如图,DE与MN交于点F,连结MD、ME, ∵DE是⊙O的直径, ∴∠DME=90°, 又∵∠MFD=90°, ∴∠MDE=∠EMN, ∴tan∠MDE=tan∠EMN , ∴, 即(1) (注:本式也可由△MDF~△EMF得到) ∵在平移过程中,图形的形状及特征保持不变,抛物线的图象可通过的图象平移得到, ∴可以将问题转化为:点D在y轴上,点M、N在x轴上进行探索(如图2), 由图形的对称性可得点D为抛物线顶点, 依题意,得,设D(0,k)(k=2r-1>0),M(x1,0),N(x2,0)(x2<x2), 则经过M、D、N三点的抛物线为, 当y=0时,x1、x2为的两根,解得, ∴, 代入(1)式得, ∴, 又k>0, ∴a=-1, 故a的值不变。 |
|
据专家权威分析,试题“如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l..”主要考查你对 二次函数的定义,一次函数的图像,梯形,梯形的中位线,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义一次函数的图像梯形,梯形的中位线直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)相似三角形的性质
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 - 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点名称:一次函数的图像
- 函数不是数,它是指某一变化过程中两个变量之间的关系
一次函数的图象:一条直线,过(0,b),(,0)两点。 性质:
(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。
k,b决定函数图像的位置:
y=kx时,y与x成正比例:
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
当k<0时,直线只通过第二、四象限,不会通过第一、三象限。特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的- 画法:
(1)列表:表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
(3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。
考点名称:梯形,梯形的中位线
- 梯形的定义:
一组对边平行,另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
梯形的中位线:
连结梯形两腰的中点的线段。 梯形性质:
①梯形的上下两底平行;
②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
③等腰梯形对角线相等。梯形判定:
1.一组对边平行,另一组对边不平行的四边形是梯形。
2.一组对边平行且不相等的四边形是梯形。
梯形中位线定理:
梯形中位线平行于两底,并且等于两底和的一半。
梯形中位线×高=(上底+下底)×高=梯形面积
梯形中位线到上下底的距离相等
中位线长度=(上底+下底)
梯形的周长与面积:
梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
变形1:h=2s÷(a+b);
变形2:a=2s÷h-b;
变形3:b=2s÷h-a。
另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
对角线互相垂直的梯形面积为:对角线×对角线÷2。梯形的分类:
等腰梯形:两腰相等的梯形。
直角梯形:有一个角是直角的梯形。
等腰梯形的性质:
(1)等腰梯形的同一底边上的两个角相等。
(2)等腰梯形的对角线相等。
(3)等腰梯形是轴对称图形。
等腰梯形的判定:
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)- 直线与圆的三种位置关系的判定与性质:
(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
直线l与⊙O相交d<r;
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
(2)公共点法:通过确定直线与圆的公共点个数来判定。
直线l与⊙O相交d<r2个公共点;
直线l与⊙O相切d=r有唯一公共点;
直线l与⊙O相离d>r无公共点 。
圆的切线的判定和性质
(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线垂直于经过切点的半径。
切线长:
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 - 直线与圆的位置关系判定方法:
平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
当x1<x=-C/A<x2时,直线与圆相交。
考点名称:相似三角形的性质
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |