在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的-九年级数学
题文
在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C. (1)若m=2,n=1,求A、B两点的坐标; (2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小; (3)若m=2,△ABC是等腰三角形,求n的值. |
答案
(1)A(2,0),B(1,0);(2)∠ACB=90°; (3)①当AC=BC时,n=﹣2; ②当AC=AB时,n=﹣; ③当BC=AB时,当n>0时,n=,当n<0时,n=﹣. |
试题分析: (1)已知m,n的值,即已知抛物线解析式,求解y=0时的解即可.此时y=x2﹣(m+n)x+mn=(x﹣m)(x﹣n),所以也可直接求出方程的解,再代入m,n的值,推荐此方式,因为后问用到的可能性比较大. (2)求∠ACB,我们只能考虑讨论三角形ABC的形状来判断,所以利用条件易得﹣1=mn,进而可以用m来表示A、B点的坐标,又C已知,则易得AB、BC、AC边长.讨论即可. (3)△ABC是等腰三角形,即有三种情形,AB=AC,AB=BC,AC=BC.由(2)我们可以用n表示出其三边长,则分别考虑列方程求解n即可. 试题解析: 解:(1)∵y=x2﹣(m+n)x+mn=(x﹣m)(x﹣n), ∴x=m或x=n时,y都为0, ∵m>n,且点A位于点B的右侧, ∴A(m,0),B(n,0). ∵m=2,n=1, ∴A(2,0),B(1,0). (2)∵抛物线y=x2﹣(m+n)x+mn(m>n)过C(0,﹣1), ∴﹣1=mn, ∴n=﹣, ∵B(n,0), ∴B(﹣,0). ∵AO=m,BO=﹣,CO=1 ∴AC==, BC==, AB=AO+BO=m﹣, ∵(m﹣)2=()2+()2, ∴AB2=AC2+BC2, ∴∠ACB=90°. (3)∵A(m,0),B(n,0),C(0,mn),且m=2, ∴A(2,0),B(n,0),C(0,2n). ∴AO=2,BO=|n|,CO=|2n|, ∴AC==, BC==|n|, AB=xA﹣xB=2﹣n. ①当AC=BC时,=|n|,解得n=2(A、B两点重合,舍去)或n=﹣2; ②当AC=AB时,=2﹣n,解得n=0(B、C两点重合,舍去)或n=﹣; ③当BC=AB时,|n|=2﹣n, 当n>0时,n=2﹣n,解得n=, 当n<0时,﹣n=2﹣n,解得n=﹣. |
据专家权威分析,试题“在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.-九年级数学
下一篇:如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |