如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)。平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分-九年级数学

2 -b

mc=(1/2)2a2 +2b2 -c

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

 

角平分线线定理:
定理1:在角平分线上的任意一点到这个角的两边距离相等。
逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
注:定理2的逆命题也成立。
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

 

垂直平分线的性质:
1.垂直平分线垂直且平分其所在线段。  
2.垂直平分线上任意一点,到线段两端点的距离相等。  
3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

  • 考点名称:矩形,矩形的性质,矩形的判定

    • 矩形:
      是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

    • 矩形的性质:
      1.矩形的4个内角都是直角;
      2.矩形的对角线相等且互相平分;
      3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
      4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
      5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
      6.顺次连接矩形各边中点得到的四边形是菱形

    • 矩形的判定
      ①定义:有一个角是直角的平行四边形是矩形
      ②定理1:有三个角是直角的四边形是矩形
      ③定理2:对角线相等的平行四边形是矩形
      ④对角线互相平分且相等的四边形是矩形
      矩形的面积:S矩形=长×宽=ab。

    • 黄金矩形:
      宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
      黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

    考点名称:相似三角形的性质

    • 相似三角形性质定理:
      (1)相似三角形的对应角相等。
      (2)相似三角形的对应边成比例。
      (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
      (4)相似三角形的周长比等于相似比。
      (5)相似三角形的面积比等于相似比的平方。
      (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
      (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
      (8)c/d=a/b 等同于ad=bc.
      (9)不必是在同一平面内的三角形里
      ①相似三角形对应角相等,对应边成比例.
      ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
      ③相似三角形周长的比等于相似比

      定理推论:
      推论一:顶角或底角相等的两个等腰三角形相似。
      推论二:腰和底对应成比例的两个等腰三角形相似。
      推论三:有一个锐角相等的两个直角三角形相似。
      推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
      推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
      推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐