如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。(1)求抛物线的解析式;(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q-九年级数学

题文

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。

(1) 求抛物线的解析式;
(2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。
(注:抛物线的对称轴为
题型:解答题  难度:偏难

答案

解:(1)设抛物线的解析式为y=a(x+3)(x-4),
因为B(0,4)在抛物线上,
所以4=a(0+3)(0-4),
解得a=
所以抛物线解析式为
(2)连接DQ,
在Rt△AOB中,
所以AD=AB=5,AC=AD+CD=3+4=7,CD=AC-AD=7-5=2,
因为BD垂直平分PQ,
所以PD=QD,PQ⊥BD,
所以∠PDB=∠QDB,
因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,
所以DQ∥AB,
所以∠CQD=∠CBA,∠CDQ=∠CAB,
所以△CDQ∽△CAB,
所以,,即
所以AP=AD- DP=AD-DQ=5-=

所以t的值是
(3)对称轴上存在一点M,使MQ+MC的值最小,
理由:因为抛物线的对称轴为
所以A(- 3,0),C(4,0)两点关于直线对称,
连接AQ交直线于点M,则MQ+MC的值最小。
过点Q作QE⊥x轴于E,所以∠QED=∠BOA=90°,
即DQ∥AB,∠BAO=∠QDE,△DQE∽△ABO,
 所以,即
所以QE=,DE=,所以OE=OD+DE=2+=
所以Q(),
设直线AQ的解析式为
,解得:
所以,直线AQ的解析式为
联立,解得:y=
所以,M点的坐标为
即在对称轴上存在点M,使MQ+MC的值最小。

据专家权威分析,试题“如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点。(1)求抛物线的..”主要考查你对  求二次函数的解析式及二次函数的应用,勾股定理,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用勾股定理相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐