如图,二次函数过A(0,m)、B(-3,0)、C(12,0),过A点作x轴的平行线交抛物线于一点D,线段OC上有一动点P,连接DP,作PE⊥DP,交y轴于点E。(1)求AD的长;(2)若在线段OC上存在不-九年级数学
题文
如图,二次函数过A(0,m)、B(-3,0)、C(12,0),过A点作x轴的平行线交抛物线于一点D,线段OC上有一动点P,连接DP,作PE⊥DP,交y轴于点E。 |
(1)求AD的长; (2)若在线段OC上存在不同的两点P1、P2,使相应的点E1、E2都与点A重合,试求m的取值范围; (3)设抛物线的顶点为点Q,当60°≤∠BQC≤90°时,求m的变化范围。 |
答案
解:(1)∵B(-3,0)、C(12,0)是关于抛物线对称轴对称的两点,AD∥x轴, ∴A、D也是关于抛物线对称轴对称的两点, ∵A(0,m),∴D(9,m),∴AD=9; |
|
(2)∵PE⊥DP, |
|
(3)设抛物线的方程为:y=a(x+3)(x-12), 又∵抛物线过点A(0,m), ∴m=-36a,∴a=-m ∴y=-m(x+3)(x-12)=-m(x-)2+m ∵tan∠BQM=,QM=m 又∵60°≤∠BQC≤90° ∴由抛物线性质得30°≤∠BQM≤45° ∴当∠BQM=30°时,可求出m=, 当∠BQM=45°时,可求出m=, ∴m的取值范围为≤m≤。 |
据专家权威分析,试题“如图,二次函数过A(0,m)、B(-3,0)、C(12,0),过A点作x轴的平行..”主要考查你对 求二次函数的解析式及二次函数的应用,二次函数的图像 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用二次函数的图像
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |