已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数。(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位长度,求平-九年级数学


也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 考点名称:二次函数的图像

    • 二次函数的图像
      是一条关于对称的曲线,这条曲线叫抛物线。
      抛物线的主要特征:
      ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
      ②有对称轴;
      ③有顶点;
      ④c 表示抛物线与y轴的交点坐标:(0,c)。

    • 二次函数图像性质:
      轴对称:

      二次函数图像是轴对称图形。对称轴为直线x=-b/2a
      对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
      特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
      a,b同号,对称轴在y轴左侧
      b=0,对称轴是y轴
      a,b异号,对称轴在y轴右侧

      顶点:
      二次函数图像有一个顶点P,坐标为P ( h,k )
      当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
      h=-b/2a, k=(4ac-b^2)/4a。

      开口:
      二次项系数a决定二次函数图像的开口方向和大小。
      当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
      |a|越大,则二次函数图像的开口越小。

    • 决定对称轴位置的因素:
      一次项系数b和二次项系数a共同决定对称轴的位置。
      当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
      当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
      可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
      事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

      决定与y轴交点的因素:

      常数项c决定二次函数图像与y轴交点。
      二次函数图像与y轴交于(0,C)
      注意:顶点坐标为(h,k), 与y轴交于(0,C)。

      与x轴交点个数:
      a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
      k=0时,二次函数图像与x轴只有1个交点。
      a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
      当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
      当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
      当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

    考点名称:平移

    • 定义:
      将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

    • 平移基本性质:
      经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
      平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
      (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
      (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
      (3)多次连续平移相当于一次平移。
      (4)偶数次对称后的图形等于平移后的图形。
      (5)平移是由方向和距离决定的。
      这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
      平移的条件:确定一个平移运动的条件是平移的方向和距离。

      平移的三个要点
      1 原来的图形的形状和大小和平移后的图形是全等的。
      2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
      3 平移的距离。(长度,如7厘米,8毫米等)

      平移作用:
      1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
      2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

    • 平移作图的步骤:
      (1)找出能表示图形的关键点;
      (2)确定平移的方向和距离;
      (3)按平移的方向和距离确定关键点平移后的对应点;
      (4)按原图的顺序,连结各对应点。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐