如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0),过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E,点M是四边形OADE的对角线的交点,-九年级数学

  • 梯形性质:
    ①梯形的上下两底平行;
    ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
    ③等腰梯形对角线相等。

    梯形判定:
    1.一组对边平行,另一组对边不平行的四边形是梯形。
    2.一组对边平行且不相等的四边形是梯形。

    梯形中位线定理:
    梯形中位线平行于两底,并且等于两底和的一半。
    梯形中位线×高=(上底+下底)×高=梯形面积
    梯形中位线到上下底的距离相等
    中位线长度=(上底+下底)

    梯形的周长与面积
    梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
    等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
    梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
    变形1:h=2s÷(a+b);
    变形2:a=2s÷h-b;
    变形3:b=2s÷h-a。
    另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
    对角线互相垂直的梯形面积为:对角线×对角线÷2。

  • 梯形的分类


    等腰梯形:两腰相等的梯形。
    直角梯形:有一个角是直角的梯形。

    等腰梯形的性质:
    (1)等腰梯形的同一底边上的两个角相等。
    (2)等腰梯形的对角线相等。
    (3)等腰梯形是轴对称图形。

    等腰梯形的判定:
    (1)定义:两腰相等的梯形是等腰梯形
    (2)定理:在同一底上的两个角相等的梯形是等腰梯形
    (3)对角线相等的梯形是等腰梯形。

  • 考点名称:正方形,正方形的性质,正方形的判定

    • 正方形的定义:
      有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
      特殊的长方形。
      四条边都相等且四个角都是直角的四边形叫做正方形。
      有一组邻边相等的矩形是正方形。
      有一个角为直角的菱形是正方形。
      对角线平分且相等,并且对角线互相垂直的四边形为正方形。
      对角线相等的菱形是正方形。

    • 正方形的性质:
      1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
      2、内角:四个角都是90°;
      3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
      4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
      5、正方形具有平行四边形、菱形、矩形的一切性质;
      6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
      正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
      7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
      正方形外接圆面积大约是正方形面积的157%。
      8、正方形是特殊的长方形。

    • 正方形的判定:
      判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
      1:对角线相等的菱形是正方形。
      2:有一个角为直角的菱形是正方形。
      3:对角线互相垂直的矩形是正方形。
      4:一组邻边相等的矩形是正方形。
      5:一组邻边相等且有一个角是直角的平行四边形是正方形。
      6:对角线互相垂直且相等的平行四边形是正方形。
      7:对角线相等且互相垂直平分的四边形是正方形。
      8:一组邻边相等,有三个角是直角的四边形是正方形。
      9:既是菱形又是矩形的四边形是正方形。

      有关计算公式:
      若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
      正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
      正方形周长计算公式: C=4a 。
      S正方形=。(正方形边长为a,对角线长为b)

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐