如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P。(1)求点A的坐标,并判断△PCA存在-九年级数学

题文

如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P。
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△PCD的面积为S,求S关于m的关系式。
题型:解答题  难度:偏难

答案

解:(1)令,得

∴点A的坐标为(2,0)
是等腰三角形。
(2)存在。
(3)当0<m<2时,如图1,作轴于H

∵A(2,0),C(m,0)



代入



时,不存在。
(2)当时,如图2,作轴于H,设

∵A(2,0),C(m,0)



代入


据专家权威分析,试题“如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它..”主要考查你对  求二次函数的解析式及二次函数的应用,一元二次方程的解法,等腰三角形的性质,等腰三角形的判定,平移  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用一元二次方程的解法等腰三角形的性质,等腰三角形的判定平移

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐