已知:函数y=ax2+x+1的图象与x轴只有一个公共点。(1)求这个函数关系式;(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径-九年级数学

题文

已知:函数y=ax2+x+1的图象与x轴只有一个公共点。

(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由。
题型:解答题  难度:偏难

答案

解:(1)当a=0时,y=x+1,图象与x轴只有一个公共点,
当a≠0时,△=1-4a=0,a=,此时,图象与x轴只有一个公共点,
∴函数的解析式为:y=x+1或y=x2+x+1;
(2)设P为二次函数图象上的一点,过点P作PC⊥x 轴于点C,
∵y=ax2+x+1是二次函数,由(1)知该函数关系式为:y=x2+x+1,则顶点为B(-2,0),
图象与y轴的交点坐标为A(0,1),
∵以PB为直径的圆与直线AB相切于点B,
∴PB⊥AB,则∠PBC=∠BAO,
∴Rt△PCB∽Rt△BOA,
,故PC=2BC,
设P点的坐标为(x,y),
∵∠ABO是锐角,∠PBA是直角,
∴∠PBO是钝角,
∴x<-2,
∴BC=-2-x,PC=-4-2x,即y=-4-2x,P点的坐标为(x,-4-2x),
∵点P在二次函数y=x2+x+1的图象上,
∴-4-2x=x2+x+1,
解之得:x1=-2,x2=-10,
∵x<-2,
∴x=-10,
∴P点的坐标为:(-10,16);
(3)点M不在抛物线y=ax2+x+1上,
由(2)知:C为圆与x轴的另一交点,连接CM,
CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,
取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ,
∴QE∥MD,QE=MD,QE⊥CE,
∵CM⊥PB,QE⊥CE,PC⊥x轴,
∴∠QCE=∠EQB=∠CPB,
∴tan∠QCE=tan∠EQB=tan∠CPB=
CE=2QE=2×2BE=4BE,
又CB=8,故BE=,QE=
∴Q点的坐标为(-),
可求得M点的坐标为

∴C点关于直线PB的对称点M不在抛物线y=ax2+x+1上。

据专家权威分析,试题“已知:函数y=ax2+x+1的图象与x轴只有一个公共点。(1)求这个函数关..”主要考查你对  求二次函数的解析式及二次函数的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐