已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF=CG=DH。设四边形EFGH的面积为S,AE=x(0≤x≤1)。(1)如图1,当四边形ABCD为正方形时,①求S关于x的-九年级数学
题文
已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF=CG=DH。设四边形EFGH的面积为S,AE=x(0≤x≤1)。 |
(1)如图1,当四边形ABCD为正方形时, ①求S关于x的函数解析式,并在图2中画出函数的草图; ②当x为何值时,S=? (2)如图3,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积能否等于?若能,求出相应x的值;若不能,请说明理由。 |
答案
解:(1)①在Rt△AEH中,AE=x,AH=1-x, 则=; 列表: ②根据题意,得, 解方程,得, 即得时,S=; (2)四边形EFGH的面积可以等于; 由条件,易证△AEH≌△CGF,△EBF≌△GDH, 作HM⊥AE于M,作FN⊥EB且FN交EB的延长线于N, ∵AE=x,则AH=1-x, 又在Rt△AMH中,∠HAM=30°, ∴HM=AH=(1-x), 同理得FN=BF=x, ∴,, 又∵SABCD=, ∴四边形EFGH的面积, ∴令,解得, 即时,四边形EFGH的面积等于。 |
据专家权威分析,试题“已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的..”主要考查你对 求二次函数的解析式及二次函数的应用,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用菱形,菱形的性质,菱形的判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |