如图,∠AOB为直角,∠BOC为锐角,且OM平分∠AOC,ON平分∠BOC.(1)若∠BOC=46°,试求∠MON的度数;(2)如果(1)中的∠BOC=α(α为锐角),其他条件不变,试求∠MON的度数;(3)如果(1)中∠A-七年级数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图,∠AOB为直角,∠BOC为锐角,且OM平分∠AOC,ON平分∠BOC.
(1)若∠BOC=46°,试求∠MON的度数;
(2)如果(1)中的∠BOC=α(α为锐角),其他条件不变,试求∠MON的度数;
(3)如果(1)中∠AOB=ω,其他条件不变,你能求出∠MON的度数吗?
(4)从(1)(2)(3)的结果,你能看出什么规律?
题型:解答题  难度:中档

答案

解:(1)∵∠AOB=90°,∠BOC=46°,
∴∠AOC=∠AOB+∠BOC=90°+46°=136°,
又∵OM为∠AOC平分线,ON为∠BOC平分线,
∴∠MOC=∠AOC=×136°=68°,∠NOC=∠BOC=×46°=23°,
∴∠MON=∠MOC﹣∠NOC=68°﹣23°=45°;
(2)当∠BOC=α时,∠MOC=(90°+α),
∠NOC=α,∠MON=∠MOC﹣∠NOC=(90°+α)﹣α=45°;
(3)当∠AOB=ω时,∠MOC=(ω+46°),∠NOC=∠BOC=23°,
∠MON=∠MOC﹣∠NOC=(ω+46°)﹣23°=ω;
(4)由(1)(2)(3)可以看出,
当∠BOC为锐角时,∠MON的大小等于∠AOB的一半而与∠BOC的大小无关.

据专家权威分析,试题“如图,∠AOB为直角,∠BOC为锐角,且OM平分∠AOC,ON平分∠BOC.(1)若..”主要考查你对  角平分线的定义 ,看图形找规律  等考点的理解。关于这些考点的“档案”如下:

角平分线的定义 看图形找规律

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

考点名称:看图形找规律

  • 看图形找规律的题目也是比较常见的题目,作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。

  • 看图形找规律题步骤:
    ①寻找数量关系;
    ②用代数式表示规律;
    ③验证规律。

    解题方法:
    一、基本方法——看增幅
    (一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。
    例:4、10、16、22、28……,求第n位数。
    分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

    (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
    基本思路是:
    1、求出数列的第n-1位到第n位的增幅;
    2、求出第1位到第第n位的总增幅;
    3、数列的第1位数加上总增幅即是第n位数。
    举例说明:2、5、10、17……,求第n位数。
    分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
    〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
    所以,第n位数是:2+ n2-1= n2+1
    此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

    (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

    (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

    二、基本技巧
    (一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
    例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是什么。
    解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
    给出的数:0,3,8,15,24,……。
    序列号:   1,2,3, 4, 5,……。
    容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。

    (二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
    例如:1,9,25,49,( ),( ),的第n为(2n-1)2

    (三)看例题:
    A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1
    B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n

    (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐