如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(3)从(1)、(2)的结果中能得出-数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(3)从(1)、(2)的结果中能得出什么结论?
(4)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿设计一道以线段为背景的计算题,并给出解答.

题型:解答题  难度:中档

答案

(1)∵∠AOB=90°,OM平分∠AOB,
∴∠AOM=∠BOM=45°,
同理,∠BON=∠NOC=15°,
∴∠MON=∠BOM+∠BON=45°+15°=60°.

(2)∵∠AOB=α,OM平分∠AOB,
∴∠AOM=∠BOM=
α
2

同理,∠BON=∠NOC=
β
2

∴∠MON=∠BOM+∠BON=
α
2
+
β
2
=
α+β
2


(3)∠MON=
α+β
2


(4)如图示,


点D是AB的中点,点E是EC的中点,AB=8,BC=4,求DE.
∵点D是AB的中点,AB=8,
∴BD=4,
同理,BE=2,
所以DE=4+2=6.

据专家权威分析,试题“如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.(1)求∠M..”主要考查你对  角平分线的定义   等考点的理解。关于这些考点的“档案”如下:

角平分线的定义

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐