如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有_________个小于平角的角;(2)若∠AOC=50°,则∠COE的度数=_________,∠BOE的度数=_________;(3)猜想:O-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.

(1)请你数一数,图中有_________个小于平角的角;
(2)若∠AOC=50°,则∠COE的度数=_________,∠BOE的度数=_________;
(3)猜想:OE是否平分∠BOC?请通过计算说明你猜想的结论.

题型:解答题  难度:中档

答案

(1)9;(2)65°,65°;(3)OE平分∠BOC


试题分析:(1)根据角的表示方法结合图形的特征即可得到结果;
(2)由∠AOC=50°结合角平分线的性质可求得∠AOD、∠DOC的度数,再结合∠DOE=90°即可求得结果;
(3)设∠AOC=2α,根据角平分线的性质可得∠AOD=∠COD==α,再根据∠DOE=90°可表示出∠COE、∠BOE的度数,从而作出判断.
(1)图中有∠AOD、∠DOC、∠COE、∠BOE、∠AOC、∠DOE、∠COB、∠AOE、∠DOB共9个小于平角的角;
(2)∵∠AOC=50°,OD平分∠AOC
∴∠AOD=∠DOC==25°
∵∠DOE=90°
∴∠COE=∠DOE-∠COD=65°,∠BOE=180°-∠DOE-∠AOD=65°;
(3)结论:OE平分∠BOC.
理由:设∠AOC=2α,
∵OD平分∠AOC,∠AOC=2α,
∴∠AOD="∠COD" ==α,
又∵∠DOE=90°
∴∠COE=∠DOE-∠COD=90°-α.
又∵∠BOE=180°-∠DOE-∠AOD=180°-90°-α=90°-α,
∴∠COE=∠BOE,即OE平分∠BOC.
点评:解题的关键是熟练掌握角的平分线把角分成相等的两个小角,且都等于大角的一半.

据专家权威分析,试题“如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)请你数一数,..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐