如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.(1)若∠ABC=40°,∠ACB=50°,则∠BOC=______(2)若∠ABC+∠ACB=lO0°,则∠BOC=______.(3)若∠A=70°,则∠BOC=______.(4)若∠BOC=140°,则∠-数学

题文

如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=______
(2)若∠ABC+∠ACB=lO0°,则∠BOC=______.
(3)若∠A=70°,则∠BOC=______.
(4)若∠BOC=140°,则∠A=______.
(5)你能发现∠BOC与∠A之间有什么数量关系吗?写出并说明理由.
题型:解答题  难度:中档

答案

(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC=20°,∠OCB=
1
2
∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;

(2)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=50°,
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.

(3)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=55°,
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;

(4)∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;

(5)设∠BOC=α,
∴∠OBC+OCB=180°-α,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=2(180°-α)=360°-2α,
∴∠A=180°-(ABC+∠ACB)=180°-(360°-2α)=2α-180°,
故∠BOC与∠A之间的数量关系是:∠A=2∠BOC-180°.

据专家权威分析,试题“如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.(1)若∠ABC=40°,∠AC..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐