如图,点E是△ABC的两条角平分线的交点.(1)若∠A=80°,求∠BEC的度数;(2)若∠BEC=130°,求∠A的度数;(3)∠BEC能是直角吗?能是锐角吗?说明理由.-数学

题文

如图,点E是△ABC的两条角平分线的交点.
(1)若∠A=80°,求∠BEC的度数;
(2)若∠BEC=130°,求∠A的度数;
(3)∠BEC能是直角吗?能是锐角吗?说明理由.
题型:解答题  难度:中档

答案

(1)∵∠A=80°(已知),
∴∠ABC+ACB=180°-80°=100°(三角形内角和定理),
∵BD,CF是∠ABC,∠ACB的平分线,
∴∠EBC+∠ECB=
1
2
(∠ABC+ACB)=50°,
∴∠BEC=180°-50°=130°(三角形内角和定理);

(2)∵∠BEC=130°,
∴∠EBC+∠ECB=
1
2
(∠ABC+ACB)=180°-130°=50°(三角形内角和定理),
∴∠ABC+∠ACB=2×50°=100°,
∴∠A=180°-100°=80°(三角形内角和定理);

(3)∠BEC不能是直角,也不能是锐角.理由:
∵∠BEC+
1
2
(∠ABC+∠ACB)=180°,∠ABC+∠ACB<180°,
∴180°-∠BEC<90°,
∴∠BEC>90°.
故∠BEC既不能是直角,也不能是锐角.

据专家权威分析,试题“如图,点E是△ABC的两条角平分线的交点.(1)若∠A=80°,求∠BEC的度数..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐