如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,设运动时间为T(秒),∠APB=y(度),①沿O?A?D?O路线作匀速运动;②沿O?D?C?O路线作匀速运动;③沿O?C?B?O路线作匀速运动;④沿-数学
题文
如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,设运动时间为T (秒),∠APB=y (度), ①沿O?A?D?O路线作匀速运动; ②沿O?D?C?O路线作匀速运动; ③沿O?C?B?O路线作匀速运动; ④沿O?B?A?O路线作匀速运动. 则下列路线作匀速运动的图象是右图中表示y与t之间的函数关系最恰当的序号是______. |
答案
分析函数图象可知,y逐渐减小到45°,可见点P逐渐沿OD运动到半圆AC上; 平行与x轴的一段,说明在弧CD上移动度数y是45°; 最后一段可知y逐渐增大到90°,说明点P从C运动到了点O. 故路线②最合适. |
据专家权威分析,试题“如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,设运动时间为..”主要考查你对 函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的图像
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.- 由函数解析式画其图象的一般步骤:
①列表:列表给出自变量与函数的一些对应值;
②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.
函数图象上的点的坐标与其解析式之间的关系:
①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |