以前我们曾学过这样的算式:11×2=1-12,12×3=12-13,13×4=13-14,…则11×2+12×3+13×4+…=1-12+12-13+13-14+….运用这种解题思想计算:1(x-1)x+1x(x+1)+1(x+1)(x+2)+…+1(x+2006)(x-数学

首页 > 考试 > 数学 > 初中数学 > 分式的加减/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

以前我们曾学过这样的算式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…则
1
1×2
+
1
2×3
+
1
3×4
+…=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+….
运用这种解题思想计算:
1
(x-1)x
+
1
x(x+1)
+
1
(x+1)(x+2)
+…+
1
(x+2006)(x+2007)
题型:解答题  难度:中档

答案

原式=
1
x-1
-
1
x
+
1
x
-
1
x+1
+
1
x+1
-
1
x+2
+…+
1
x+2006
-
1
x+2007
(4分)
=
1
x-1
-
1
x+2007
(7分)
=
2008
(x-1)(x+2007)
(9分)

据专家权威分析,试题“以前我们曾学过这样的算式:11×2=1-12,12×3=12-13,13×4=13-14,..”主要考查你对  分式的加减  等考点的理解。关于这些考点的“档案”如下:

分式的加减

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐