设x,y,z,w为四个互不相等的实数,并且x+1y=y+1z=z+1ω=w+1x求证:x2y2z2w2=1-数学

题文

设x,y,z,w为四个互不相等的实数,并且x+
1
y
=y+
1
z
=z+
1
ω
=w+
1
x

求证:x2y2z2w2=1
题型:解答题  难度:中档

答案

证明:∵x+
1
y
=y+
1
z
=z+
1
ω
=w+
1
x

x+
1
y
=y+
1
z
y+
1
z
=z+
1
ω
z+
1
ω
=ω+
1
x
ω+
1
x
=x+
1
y
?

x-y=
1
z
-
1
y
y-z=
1
ω
-
1
z
z-ω=
1
x
+
1
ω
ω-x=
1
y
-
1
y
?

(x-y)zy=y-z          ①
(y-z)ωz=z-ω        ②
(z-ω)xω=ω-x       ③
(ω-x)yx=x-y         ④

由①×②×③×④得,x2y2z2w2(x-y)(y-z)(z-w)(w-x)=(x-y)(y-z)(z-w)(w-x)
∵x,y,z,w互不相等
∴x2y2z2w2=1.

据专家权威分析,试题“设x,y,z,w为四个互不相等的实数,并且x+1y=y+1z=z+1ω=w+1x求证..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐