如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.(1)图1中,四边形PEOF的面积S1=_____(用含k1、k2的式子表-九年级数学
题文
如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0<k2<|k1|)于E、F两点. (1)图1中,四边形PEOF的面积S1=_____ (用含k1、k2的式子表示); (2)图2中,设P点坐标为(-4,3). ①判断EF与AB的位置关系,并证明你的结论; ②记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由. |
答案
(1)k1+k2; (2)① EF∥AB 证明:如图,由题意可得A(-4,0),B(0,3),, . ∴PA=3,PE=,PB=4,PF=. ∴, ∴. 又∵∠APB=∠EPF. ∴△APB ∽△EPF, ∴∠PAB=∠PEF. ∴EF∥AB. ②S2没有最小值, 理由如下:过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q. 由上知M(0,),N(,0),Q(,). 而S△EFQ= S△PEF, ∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN = ==. 当时,S2的值随k2的增大而增大,而0<k2<12. ∴0<S2<24,S2没有最小值. |
据专家权威分析,试题“如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,点A为反比例函数的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C.则矩形ABOC的面积是().-九年级数学
下一篇:如图①,点A、B是双曲线(k>0)上的点,分别经过A、B两点向x轴、y轴作垂线段AC、AD、BE、BF,AC和BF交于点G,得到正方形OCGF(阴影部分),且,△AGB的面积为2.(1)求双曲线的解-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |