如图,矩形OABC的面积为1003,它的对角线OB与双曲线y=kx相交于点D,且OB:OD=5:3,则k=______.-数学

题文

如图,矩形OABC的面积为
100
3
,它的对角线OB与双曲线y=
k
x
相交于点D,且OB:OD=5:3,则k=______.

题型:填空题  难度:中档

答案

过D作DM⊥OA于M,DN⊥OC于N,
设D的坐标是(x,y),
则DM=y,DN=x,
∵OB:OD=5:3,矩形OABC,
∴∠BAO=90°,
∵DM⊥OA,
∴DM∥BA,


∴△ODM∽△OBA,
DM
AB
=
OD
OB
=
3
5

∴DM=
3
5
AB,
同理DN=
3
5
BC,
∵四边形OABC的面积为
100
3

∴AB×BC=
100
3

∴DM×DN=xy=
3
5
AB×
3
5
BC=
9
25
×
100
3
=12,
即k=xy=12.
故答案为:12.

据专家权威分析,试题“如图,矩形OABC的面积为1003,它的对角线OB与双曲线y=kx相交于点..”主要考查你对  求反比例函数的解析式及反比例函数的应用,矩形,矩形的性质,矩形的判定,比例的性质  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用矩形,矩形的性质,矩形的判定比例的性质

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

考点名称:比例的性质

  • 比例:
    在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
    比例性质:
    比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
    在比例里,两个外项的积等于两个内项的积。a:b=c:d\leftrightarrow ad=bc,则有
    证明:




    2.分比性质:
    在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:




    3.合分比性质:
    在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则




    4.等比性质:
    在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则

  • 重要定理:


    比例尺:
    是表示图上距离比实地距离缩小的程度,因此也叫缩尺。
    用公式表示为:比例尺=图上距离/实地距离。
    1.数字式,用数字的比例式或分数式表示比例尺的大小。
    例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,
    如:图上1厘米相当于地面距离500千米,或五千万分之一。

    比例线段:
    1.两条线段的长度比叫做这两条线段的比。
    2.在同一单位下,四条线段长度为a、b、c、d,其关系为a∶b=c∶d,那么,这四条线段叫做成比例线段,简称比例线段。
    3.一般的,如果三个数a,b,c满足比例式a∶b=b∶c,则b就叫做a,c的比例中项。

  • 比例的美术术语:
    比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
    在画素描的过程中要想把形画准就要注意比例了。

    把握比例的几个技巧:
    1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
    2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
    3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
    4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单;初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。

    在构图中要注意的比例关系技巧:一般被画物占画面百分之八十左右,看上去饱满。
    人物相关比例:
    1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
    2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
    3.小孩的头部比例较大,站着时一般为三到四个头高。
    4.张开双臂,两个中指之间的长度大约等于这个人的身高。
    5.手臂的长度为两个头长(腋窝-胳膊肘-手腕各位为一个头长)。
    6.手掌为三分之二头长。
    7.当举起胳膊时胳膊肘刚好到头顶。
    8.肩宽为两个头宽。
    9.脚掌为一个头长。
    10.男人肩比胯宽,而女人跨比肩宽。
    还有很多,可以在生活中多总结,多观察。这些都是标准人体比例,可以帮助初学者入门;
    也是艺术家创作英雄楷模人物绘画雕塑等艺术作品时的指导,例如米开朗基罗的大卫是七个半头高。在现实生活中有形形色色的人,在进行人物素描时就应当个别观察,抓住特征。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐