如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,3),B(-3,n)两点.(1)求一次函数与反比例函数的解析式;(2)过点B作BC⊥x轴,垂足为C,求S△ABC;(3)连接OA,在x轴上找一-数学

题文

如图,一次函数y=kx+b与反比例函数y=
m
x
的图象交于A(2,3),B(-3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)过点B作BC⊥x轴,垂足为C,求S△ABC
(3)连接OA,在x轴上找一点P,使△AOP为等腰三角形,请直接写出点P的坐标.
题型:解答题  难度:中档

答案

(1)将点A(2,3)代入反比例函数关系式可得:3=
m
2

解得:m=6,
故可得反比例函数关系式为:y=
6
x

将点B(-3,n)代入反比例函数关系式可得:n=
6
-3
=-2,
故点B的坐标为(-3,-2),
将点A、点B的坐标代入一次函数关系式可得:

2k+b=3
-3k+b=-2

解得:

k=1
b=1

故一次函数解析式为:y=x+1.
(2)

由一次函数解析式为y=x+1,可得点D的坐标为(-1,0),
则OD=1,CD=OC-OD=2,
则S△ABC=S△BCD+S△ACD=
1
2
CD×|B|+
1
2
CD×|A|=2+3=5.
(3)

①若OA=OP,
此时点P位于P1或P2,则可得P1

13
,0),P2(-

13
,0);
②若OA=AP,
此时点P位于P3,则可得P3(4,0);
③若OP=AP,作OA的中垂线,交x轴与P4,则此时点P位于P4
此时OE=
1
2
OA=

13
2

根据点A的坐标可得:cos∠AOP4=
A横
OA
=
2

13
13

OE
OP4
=
2

13
13

解得:OP4=
13
4

则点P4的坐标为(
13
4
,0).
综上可得点P的坐标为P1

13
,0)或P2(-

13
,0)或P3(4,0)或(
13
4
,0).

据专家权威分析,试题“如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(2,3),B(-3,..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐