如图,点M是反比例函数y=1x在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=12A1M,△A1C1B的面积记为S1;过点M的第二条-数学

题文

如图,点M是反比例函数y=
1
x
在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=
1
2
A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=
1
4
A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=
1
8
A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8=______.
题型:填空题  难度:偏易

答案

过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM于点F,
∵点M是反比例函数y=
1
x
在第一象限内图象上的点,
∴OB×BM=1,
∴S△A1BM=
1
2
OB×MB=
1
2

∵A1C1=
1
2
A1M,即C1为A1M中点,
∴C1到BM的距离C1F为A1到BM的距离A1E的一半,
∴S1=S△BMC1=
1
2
S△A1BM=
1
4

∴S△BMA2=
1
2
BM?A2到BM距离=
1
2
×BM×BO=
1
2

∵A2C2=
1
4
A2M,
∴C2到BM的距离为A2到BM的距离的
3
4

∴S2=S△A2C2B=
1
4
S△BMA2=
1
8

同理可得:S3=
1
16
,S4=
1
32

1
4
+
1
8
+…+
1
28
+
1
29

=
1
4
+
1
8
+…+
1
256
+
1
512

=
255
512

故答案为:
255
512

据专家权威分析,试题“如图,点M是反比例函数y=1x在第一象限内图象上的点,作MB⊥x轴于B..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐