已知:如图,在直角坐标系xOy中,Rt△OCD的一边OC在x轴上.∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数-数学

题文

已知:如图,在直角坐标系xOy中,Rt△OCD的一边OC在x轴上.∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.
(1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.
题型:解答题  难度:中档

答案

(1)过点A作AE⊥x轴于点E.
∵∠OCD=90°,
∴AE∥CD.A为OD中点,OC=3,DC=4,
∴AE是△OCD的中位线,
∴OE=EC=
1
2
OC,
∴A(1.5,2);
设反比例函数解析式为y=
k
x

那么k=1.5×2=3,
∴y=
3
x


(2)当x=3时,y=1,
∴B(3,1);
设过A、B两点的直线的解析式为y=k2x+b,

2=1.5k2+b
1=3k2+b

解得:

k2=-
2
3
b=3

∴y=-
2
3
x+3.

据专家权威分析,试题“已知:如图,在直角坐标系xOy中,Rt△OCD的一边OC在x轴上.∠C=90°,..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐