已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-3,0),AC的延长线与⊙B的切线OD交于点D.(1)求OC的长和∠CAO的度数;(2)求过-数学
题文
已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-
(1)求OC的长和∠CAO的度数; (2)求过D点的反比例函数的表达式. |
答案
(1)∵∠AOC=90°, ∴AC是⊙B的直径. ∴AC=2. 又∵点A的坐标为(-
∴OA=
∴OC=
∴sin∠CAO=
∴∠CAO=30°; (2)如图,连接OB,过点D作DE⊥x轴于点E, ∵OD为⊙B的切线, ∴OB⊥OD. ∴∠BOD=90°. ∵AB=OB, ∴∠AOB=∠OAB=30°. ∴∠AOD=∠AOB+∠BOD=30°+90°=120°. 在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD. ∴OD=OA=
在Rt△DOE中,∠DOE=180°-120°=60°, ∴OE=OD?cos60°=
∴点D的坐标为(
设过D点的反比例函数的表达式为y=
∴k=
∴y=
|
据专家权威分析,试题“已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图所示,已知正比例函数y=kx的图象与反比例函数y=15-kx的图象相交于A、B两点,且A点横坐标为2.(1)求A、B两点坐标;(2)在x轴上取关于原点对称的P、Q两点,P点在Q点右边,试-数学
下一篇:如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象相交于A、B两点.(1)求出这两个函数的解析式;(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1<y2?-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |