如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=k2x(x>0)的图象交于点D(n,-2).(1)求k1和k2的-数学

题文

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF∽△ACE?若存在,求出点F的坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4),
将A(1,4)代入反比例解析式y=
k1
x
得:k1=4;
过A作AM⊥y轴,过D作DN⊥y轴,
∴∠AMB=∠DNB=90°,
∴∠BAM+∠ABM=90°,
∵AC⊥BD,即∠ABD=90°,
∴∠ABM+∠DBN=90°,
∴∠BAM=∠DBN,
∴△ABM∽△BDN,
AM
BN
=
BM
DN
,即
1
4
=
2
DN

∴DN=8,
∴D(8,-2),
将D坐标代入y=
k2
x
得:k2=-16;

(2)符合条件的F坐标为(0,-8),理由为:
由y=2x+2,求出C坐标为(-1,0),
∵OB=ON=2,DN=8,
∴OE=4,
可得AE=5,CE=5,AC=2

5
,BD=4

5
,∠EBO=∠ACE=∠EAC,
若△BDF∽△ACE,则
BD
AC
=
BF
AE
,即
4

5
2

5
=
BF
5

解得:BF=10,
则F(0,-8).
综上所述:F点坐标为(0,-8)时,△BDF∽△ACE.

据专家权威分析,试题“如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=k1..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐