如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]
··························· 6分

时,有最大值为
此时.····························· 9分
(4)当点沿这两边运动时,的点有2个.·········· 11分
①当点与点重合时,
当点运动到与点重合时,的长是12单位长度,
轴于点,作轴于点
得:
所以,从而
所以当点边上运动时,的点有1个.·········· 13分
②同理当点边上运动时,

可算得
而构成直角时交轴于
所以,从而的点也有1个.
所以当点沿这两边运动时,的点有2个.··········· 14分
(1)已知了AB的长和B点的坐标,那么sin∠BAO= ,因此∠BAO=60°
(2)由函数的图形可知:当t=5时,三角形OPQ的面积是30,如果设点P的速度为a,那么AP=5a,那么P到AC的距离就是 ,也就是P到OQ的距离为10-,OQ=QD+OD=5a+2.因此(5a+2)×(10-)×=30,解得a=1.6,a=2.由于抛物线的解析式为S=(at+2)(10- )× ,经化简后可得出对称轴应该是t=,当a=1.6时,对称轴t=5.625显然大于5,与给出的抛物线的图形不相符,因此a=2是本题的唯一的解.也就是说P的速度是2单位/秒.
(3)根据(2)的求解过程即可得出S的解析式.然后根据函数的解析式来得出函数的最大值及此时对应的t的取值,然后根据P,Q的速度和t的取值,可求出P点的坐标.
(4)本题其实主要是看P在B点和C点时∠OPQ的度数范围,当∠OBQ的度数大于90°,∠OCQ的度数小于90°时,那么在AB,BC上分别有一个符合要求的点P,如果∠OBQ的度数小于90°时那么就没有符合要求的点,如果∠OBQ=90°,那么符合要求的点只有一个.当P,B重合时,作∠OPM=90°交y轴于点M,作PH⊥y轴于点H,然后比较OM和OQ的长即可得出∠OPQ的大致范围,根据相似三角形OPH和OPM不难得出OM的长,然后比较OM,OQ的大小,如果OQ>OM则说明∠OPQ>90°,反之则小于90°,用同样的方法可得出当P与C重合时∠OPQ的大致取值范围,然后根据上面的分析即可判定出有几个符合要求的点.

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐