阅读下面材料,并解答下列问题:在形如ab=N的式子中,我们已经研究过两种情况:①已知a和b,求N,这是乘方运算;②已知b和N,求a,这是开方运算.现在我们研究第三种情况:已知a和-数学
题文
阅读下面材料,并解答下列问题: 在形如ab=N的式子中,我们已经研究过两种情况: ①已知a和b,求N,这是乘方运算; ②已知b和N,求a,这是开方运算. 现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫作对数运算. 定义:如果ab=N(a>0.a≠1,N>0),则b叫作以a为底的N的对数,记作b=logaN. 例如:因为23=8,所以log28=3;因为2-3=
(1)根据定义计算: ①log381=______; ②log33=______; ③log31=______; ④如果logx16=4,那么x=______. (2)设ax=M,ay=N,则logaN=y(a>0,a≠1,M、N均为正数).用logaM,logaN的代数式分别表示logaMN及loga
|
答案
(1)①∵34=81, ∴log381=4; ②∵31=3, ∴log33=1; ③∵30=1, ∴log31=0; ④由题意得:x4=16, x=±2; (2)∵ax=M,ay=N, ∴logaM=x,logaN=y, ∵ax?ay=ax+y=MN, ∴logaMN=x+y=logaM+logaN, ∵ax÷ay=ax-y=
∴loga
|
据专家权威分析,试题“阅读下面材料,并解答下列问题:在形如ab=N的式子中,我们已经研究..”主要考查你对 有理数除法,有理数的乘方 等考点的理解。关于这些考点的“档案”如下:
有理数除法有理数的乘方
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |