如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C。(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存-九年级数学


二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧

顶点:
二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
h=-b/2a, k=(4ac-b^2)/4a。

开口:
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

  • 考点名称:相似三角形的判定

    • 相似三角形:
      对应角相等,对应边成比例的两个三角形叫做相似三角形。
      互为相似形的三角形叫做相似三角形。

      例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

    • 相似三角形的判定:
      1.基本判定定理
      (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
      (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
      (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
      (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
      2.直角三角形判定定理
      (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
      (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
      3.一定相似:
      (1).两个全等的三角形
      (全等三角形是特殊的相似三角形,相似比为1:1)
      (2).两个等腰三角形
      (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
      (3).两个等边三角形
      (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
      (4).直角三角形中由斜边的高形成的三个三角形。

    • 相似三角形判定方法:
      证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
      一、(预备定理)
      平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
      二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
      三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
      四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
      五(定义)
      对应角相等,对应边成比例的两个三角形叫做相似三角形
      六、两三角形三边对应垂直,则两三角形相似。
      七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
      八、由角度比转化为线段比:h1/h2=Sabc

      易失误
      比值是一个具体的数字如:AB/EF=2
      而比不是一个具体的数字如:AB/EF=2:1

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐