如图抛物线与x轴交于A、B两点,与y轴交于点C(0,-1),且对称轴x=1。(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3,若-九年级数学

题文

如图抛物线与x轴交于A、B两点,与y轴交于点C(0,-1),且对称轴x=1。

(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3,若存在,求出点D的坐标;若不存在,说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2)。
题型:解答题  难度:偏难

答案

解:(1)∵抛物线与y轴交于点C(0,-1),且对称轴x=1,
,解得:
∴抛物线解析式为y=x2-x-1,令x2-x-1=0,得:x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)设在x轴下方的抛物线上存在D(a,a2-a-1)(0<a<3)使四边形ABCD的面积为3,
作DM⊥x轴于M,则S四边形ABDC=S△AOC+S梯形OCDM+S△BMD
∴S四边形ABCD=|xAyC|+(|yD|+|yC|)xM+(xB-xM)|yD|
=×1×1+[-(a2-a-1)+1]×a+(3-a)[-(a2-a-1)]
=-a2+a+2,
∴由-a2+a+2=3,解得:a1=1,a2=2,
∴D的纵坐标为:a2-a-1=-或-1,
∴点D的坐标为(1,),(2,-1);
(3)①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为-4或4,
当x=-4时,y=7;当x=4时,y=
所以此时点P1的坐标为(-4,7),P2的坐标为(4,);
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,线段AB中点为G,PQ必过G点且与y轴交于Q点,过点P作x轴的垂线交于点H,可证得△PHG≌△QOG,
∴GO=GH,
∵线段AB的中点G的横坐标为1,
∴此时点P横坐标为2,由此当x=2时,y=-1,
∴这是有符合条件的点P3(2,-1),
∴所以符合条件的点为:P1的坐标为(-4,7),P2的坐标为(4,);P3(2,-1)。

据专家权威分析,试题“如图抛物线与x轴交于A、B两点,与y轴交于点C(0,-1),且对称轴x=..”主要考查你对  求二次函数的解析式及二次函数的应用,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用平行四边形的性质

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐