在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且。-九年级数学

题文

在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c (a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
题型:解答题  难度:偏难

答案

解:示意图如图所示,
(1)∵直线MC的函数表达式为y=kx-3,
∴点C(0,-3),

∴可设|OC|=3t(t>0),
则由勾股定理,得|OB|=t,
而|OC|=3t=3,
∴t=1,
∴|OB|=1,
∴点B(1,0),
∵点B(1,0)、C(0,-3)在抛物线上,
,解得
∴抛物线的函数表达式为y=(x+1)2-4=x2+2x-3;
(2)假设在抛物线上存在异于点C的点P,
使以N、P、C 为顶点的三角形是以NC为一条直角边的直角三角形;
①若PN为另一条直角边,
∵点M(-1,-4)在直线MC上,
∴-4=-k-3,即k=1,
∴直线MC的函数表达式为y=x-3,
易得直线MC与x轴的交点N的坐标为N(3,0),
∵|OC|=|ON|,
∴∠CNO=45°,
在y轴上取点D(0,3),连接ND交抛物线于点P,
∵|ON|=|OD|,
∴∠DNO=45°,
∴∠PNC=90°,
设直线ND的函数表达式为y=mx+n,
,解得
∴直线ND的函数表达式为y=-x+3,
设点P(x,-x+3),代入抛物线的函数表达式,得
-x+3=x2+2x-3,即x2+3x-6=0,解得

∴满足条件的点为
②若PC是另一条直角边,
∵点A是抛物线与x轴的另一交点,
∴点A的坐标为(-3,0),
连接AC,
∵|OA|=|OC|,
∴∠OCA=45°,
又∠OCN=45°,
∴∠ACN=90°,
∴点A就是所求的点P3(-3,0);
综上可知,在抛物线上存在满足条件的点,有3个,分别为
,P3(-3,0);
(3)若抛物线沿其对称轴向上平移,设向上平移b(b>0)个单位,
可设函数表达式为y=x2+2x-3+b,
,消去y,得x2+x+b=0,
∴要使抛物线与线段NQ总有交点,必须Δ=1-4b≥0,即

∴若抛物线向上平移,最多可平移个单位长度;
②若抛物线沿其对称轴向下平移,设向下平移b(b>0)个单位,
可设函数表达式为y=x2+2x-3-b,
∵当x=-3时,y=-b;
当x=3时,y=12-b,
易求得Q(-3,-6),又N(3,0),
∴要使抛物线与线段NQ总有交点,必须-b≥-6或12-b≥0,即b≤6或b≤12,
∴0<b≤12,
∴若抛物线向下平移,最多可平移12个单位长度;
综上可知,若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则向上最多可平移个单位长度,向下最多可平移12个单位长度。

据专家权威分析,试题“在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交..”主要考查你对  求二次函数的解析式及二次函数的应用,直角三角形的性质及判定,平移  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用直角三角形的性质及判定平移

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐