如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(______)∴∠ABD=∠DBC(______)∵ED∥BC(______)∴∠BDE=∠DBC(______)∴-数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,则EF也是∠AED的平分线.完成下列推理过程:
证明:∵BD是∠ABC的平分线(______)
∴∠ABD=∠DBC(______)
∵ED∥BC(______)
∴∠BDE=∠DBC(______)
∴______(______)
又∵∠FED=∠BDE(______)
∴______∥______(______)
∴∠AEF=∠ABD(______)
∴∠AEF=∠DEF(______)
∴EF是∠AED的平分线(______)

题型:解答题  难度:中档

答案

证明:∵BD是∠ABC的平分线(已知),
∴∠ABD=∠DBC(角平分线定义);
∵ED∥BC(已知),
∴∠BDE=∠DBC(两直线平行,内错角相等),
∴∠ABD=∠BDE(等量代换);
又∵∠FED=∠BDE(已知),
∴EF∥BD(内错角相等,两直线平行),
∴∠AEF=∠ABD(两直线平行,同位角相等),
∴∠AEF=∠DEF(等量代换),
∴EF是∠AED的平分线(角平分线定义).

据专家权威分析,试题“如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,则EF也是∠AED的平分..”主要考查你对  角平分线的定义   等考点的理解。关于这些考点的“档案”如下:

角平分线的定义

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐