如图:已知OD、OE、OF分别为∠AOB、∠AOC、∠BOC的平分线,则∠DOE和∠BOF有怎样的关系?说明理由.-数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图:已知OD、OE、OF分别为∠AOB、∠AOC、∠BOC的平分线,则∠DOE和∠BOF有怎样的关系?说明理由.
题型:解答题  难度:中档

答案

答:∠DOE=∠BOF.
理由:∵OD、OE、OF分别为∠AOB、∠AOC、∠BOC的平分线,
∴∠AOE=
1
2
∠AOC,∠AOD=
1
2
∠AOB,∠BOF=
1
2
∠BOC,
∴∠DOE=∠AOE-∠AOD=
1
2
(∠AOC-AOB),
∵∠AOB+∠BOC=∠AOC,
∴∠DOE=∠AOE-∠AOD=
1
2
∠BOC,
∴∠DOE=∠BOF.

据专家权威分析,试题“如图:已知OD、OE、OF分别为∠AOB、∠AOC、∠BOC的平分线,则∠DOE和∠..”主要考查你对  角平分线的定义   等考点的理解。关于这些考点的“档案”如下:

角平分线的定义

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐