如图△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,则∠A=______度.-数学
题文
如图△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,则∠A=______度. |
题文
如图△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,则∠A=______度. |
题型:填空题 难度:中档
答案
∵AB=AC,∴∠ABC=∠C ∵△ABC∽△BDC,∴BD=BC ∵∠BDC=∠A+∠ABD=∠C ∴∠A=∠ABD 又∠A+∠ABC+∠C=180° 即5∠A=180° ∴∠A=36°. |
据专家权威分析,试题“如图△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,则∠A=______度.-数..”主要考查你对 三角形的内角和定理,相似三角形的判定 等考点的理解。关于这些考点的“档案”如下:
三角形的内角和定理相似三角形的判定
考点名称:三角形的内角和定理
考点名称:相似三角形的判定
相似三角形的判定:
1.基本判定定理
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:
(1).两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
(2).两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
(3).两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似)
(4).直角三角形中由斜边的高形成的三个三角形。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |