如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可-数学

题文

如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.
比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2
(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(2a+b)(a+2b),在下面虚框中画出图形,并根据图形回答(2a+b)(a+2b)=______.
(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2
①你画的图中需要C类卡片______张.
②可将多项式a2+5ab+6b2分解因式为______.

(3)如图③,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下正确的关系式______(填写选项).
A.xy=
m2-n2
4
,B.x+y=m,C.x2-y2=m?n,D.x2+y2=
m2+n2
2

题型:解答题  难度:中档

答案

(1)如图:

(2a+b)(a+2b)=2a2+5ab+2b2
故答案为:2a2+5ab+2b2

(2)①∵长方形的面积为a2+5ab+6b2
∴画的图中需要C类卡片6张,
故答案为:6.

②a2+5ab+6b2=(a+2b)(a+3b),
故答案为:(a+2b)(a+3b).

(3)根据图③得:x+y=m,
∵m2-n2=4xy,
∴xy=
m2-n2
4

x2-y2=(x+y)(x-y)=mn,
∴x2+y2=(x+y)2-2xy=m2-2×
m2-n2
4
=
m2+n2
2

∴选项A、B、C、D都正确.
故答案为:ABCD.

据专家权威分析,试题“如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B..”主要考查你对  整式的加减乘除混合运算  等考点的理解。关于这些考点的“档案”如下:

整式的加减乘除混合运算

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐