(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=kx(k>0)的图象上,过点M作ME⊥y轴,过点N作NF-数学

题文

(1)探究新知:
如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.



(2)结论应用:
①如图2,点M,N在反比例函数y=
k
x
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.
试证明:MN∥EF.


题型:解答题  难度:中档

答案

(1)作CE⊥AB于E,DF⊥AB于F,则CE∥DF,
∵S△ABC=S△ABD
1
2
AB?CE=
1
2
AB?DF,CE=DF.
∴四边形CDFE为矩形,AB∥CD;




(2)连接MF、NE,过M作MP⊥EF,过N作NQ⊥EF,则MP∥NQ,
∴S△MEF=
1
2
ME?OE=
1
2
k;S△NEF=
1
2
NF?OF=
1
2
k,
∴S△MEF=S△NEF,且同底边EF,
∴M,N到EF的距离相等,即PM=NQ,
∴四边形MPQN为平行四边形,
∴MN∥EF.


据专家权威分析,试题“(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐