如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=kx(x>0)与边BC交于点D(4,m),与边AB交于点E(2,n).(1)求n关于m的函数关系式;(2)若BD=2,tan∠BAC=12,-数学

题文

如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=
k
x
(x>0)与边BC交于点D(4,m),与边AB交于点E(2,n).
(1)求n关于m的函数关系式;
(2)若BD=2,tan∠BAC=
1
2
,求k的值和点B的坐标.
题型:解答题  难度:中档

答案

(1)∵点D(4,m),点E(2,n)在双曲线y=
k
x
(x>0)上,
∴4m=2n,解得n=2m;

(2)过点E作EF⊥BC于点F,
∵由(1)可知n=2m,
∴DF=m,
∵BD=2,
∴BF=2-m,
∵点D(4,m),点E(2,n),
∴EF=4-2=2,
∵EF∥x轴,
∴tan∠BAC=tan∠BEF=
BF
EF
=
2-m
2
=
1
2
,解得m=1,
∴D(4,1),
∴k=4×1=4,B(4,3).

据专家权威分析,试题“如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐