如图1,已知双曲线y1=kx(k>0)与直线y2=k'x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为______;当x满足:______时,y1>y2;(2)过原点-数学

题文

如图1,已知双曲线y1=
k
x
(k>0)与直线y2=k'x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为______;当x满足:______时,y1>y2
(2)过原点O作另一条直线l,交双曲线y=
k
x
(k>0)于P,Q两点,点P在第一象限,如图2所示.
①四边形APBQ一定是______;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积;
③设点A、P的横坐标分别为m、n,四边形APBQ可能是矩形吗?若可能,求m,n应满足的条件;若不可能,请说明理由.
题型:解答题  难度:中档

答案

(1)因为正比例函数与反比例都关于原点成中心对称,所以B点的坐标为B(-4,-2);
由两个函数都经过点A(4,2),可知双曲线的解析式为y1=
8
x
,直线的解析式为y2=
1
2
x,
双曲线在每一象限y随x的增大而减小,直线y随x的增大而增大,
所以当x<-4或0<x<4时,y1>y2

(2)①∵正比例函数与反比例函数都关于原点成中心对称,
∴OA=OB,OP=OQ,根据对角线互相平分的四边形是平行四边形可知APBQ一定是平行四边形.
②∵A点的坐标是(3,1)
∴双曲线为y=
3
x

所以P点坐标为(1,3),
过A作x轴的垂线CD交x轴于C,可得直角梯形OPDC,过P作PD⊥DC,垂足为D,
用直角梯形的面积减去直角三角形的面积可得三角形POA的面积为4,再用4×4得四边形APBQ为16.

③∵当mn=k时,此时A(m,n),P(n,m),
∴OA=OP,对角线相等且互相平分的四边形是矩形,
∴四边形APBQ是矩形.

据专家权威分析,试题“如图1,已知双曲线y1=kx(k>0)与直线y2=k'x交于A,B两点,点A在第..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐