如图,直线y=2x-6与反比例函数y=kx(x>0)的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请-数学

题文

如图,直线y=2x-6与反比例函数y=
k
x
(x>0)的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)把(4,2)代入反比例函数y=
k
x
,得
k=8,
把y=0代入y=2x-6中,可得
x=3,
故k=8;B点坐标是(3,0);

(2)假设存在,设C点坐标是(a,0),
∵AB=AC,

(4-a)2+(2-0)2
=

(4-3)2+(2-0)2

即(4-a)2+4=5,
解得a=5或a=3(此点与B重合,舍去)
故点C的坐标是(5,0).

据专家权威分析,试题“如图,直线y=2x-6与反比例函数y=kx(x>0)的图象交于点A(4,2),与..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐