如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D.(1)设AB=x,CD=y,求y与x之间的函数关系式;(2)如果CD=6,判断四边形ABCD的形状;(3)如果AB=4,求图中阴影部-数学

题文

如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D.
(1)设AB=x,CD=y,求y与x之间的函数关系式;
(2)如果CD=6,判断四边形ABCD的形状;
(3)如果AB=4,求图中阴影部分的面积.
题型:解答题  难度:中档

答案

(1)连接OB、OE、OC
∵AB,BC分别与半圆O切于点A,E,∴BE=BA,∠OEB=∠OAB=90°
∴△OAB≌△OEB
∴∠EOB=∠AOB
同理,∵BC,CD分别与半圆O切于点E,D
∴△COE≌△COD
∴∠COD=∠COE
∵∠AOB+∠EOB+∠COE+∠COD=180°
∴∠BOE+∠COE=90°
∴OB⊥OC
∵OB2=OA2+AB2=36+x2;OC2=OD2+CD2=36+y2
∵BE=AB=x,CE=CD=y;BC=x+y.
∴(x+y)2=36+x2+36+y2
∴xy=36;
化简可得:y=
36
x


(2)若CD=6,又有半圆O的直径AD=12cm;即OE=6;故OE∥DC∥AB.
则四边形ABCD的形状是矩形;

(3)过点B作BF⊥CD于F,
∵BA是半圆O的切线,AD是半圆O的直径,
∴BA⊥AD.
又∵CD⊥AD,
∴四边形ABFD是矩形,
∴BF=AD=12,FD=BA=4.
∴CF=5,
∵CB、BA和CD都是半圆O的切线,
∴CE=CD=9,BE=BA=4.
∴CB=CE+EB=13,
∵S半圆=
1
2
π×62=18π,S梯形ABCD=
1
2
(4+9)?12=78,
∴S=S-S半圆=78-18π
说明:(1)(4分);(2)(3分);(3)(5分).

据专家权威分析,试题“如图,半圆O的直径AD=12cm,AB,BC,CD分别与半圆O切于点A,E,D..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐